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derivatives where the heavy atoms of the derivatives 
occupy different positions. The distribution yields a 
reliable estimate (0 or 7r) for the invariant in the 
favorable case that the variance of the distribution is 
small. An example shows the improvement in esti- 
mates of the three-phase structure invariants which 
results from the ability now to exploit simultaneously 
the diffraction data from a triple of isomorphous 
structures, at least in the special case of a native 
protein and two heavy-atom derivatives in which the 
heavy atoms of the derivatives are located in different 
positions in the unit cell. Particularly noteworthy is 
the ease of unique origin and enantiomorph specifica- 
tion in direct-methods applications to all three struc- 
tures. 

It would be premature to assess, at this point, the 
role that the distributions will play in actual 
macromolecular structure determinations, or to com- 
pare the present technique with the standard multiple 
isomorphous replacement technique. As mentioned 
earlier, several questions remain to be answered, prin- 
cipally concerning the effects of errors in the diffrac- 
tion data and of imperfect isomorphism. These ques- 
tions are the subject of a present study and the results 
will be presented at a later date. 

It should be stated in conclusion that, in view of 
the available evidence, the integrated direct methods- 
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isomorphous replacement probability distributions 
constitute a sound theoretical basis for 
macromolecular phase determination. 
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Abstract 

Probability density functions that are exact solutions 
to classical random-walk problems have been adapted 
to represent distributions of the magnitude of the 
normalized structure factor, for the space groups P]  
and P 1. The functions are given by readily summable 
Fourier and Fourier-Bessel series, and account 
explicitly for the atomic composition of the asym- 
metric unit. These new probability density functions 
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have been extensively tested by comparison with 
simulated histograms of ]El, for a wide range of 
atomic compositions. The most heterogeneous com- 
positions examined are C14U and C/9U, for P1 and 
P1, respectively. Very good agreement between the 
simulated and theoretical distributions has been 
obtained in all these tests, over the entire (useful) 
range 0 < ]E[ < 3. A distribution of]El values, recalcu- 
lated from published data on a triclinic platinum 
complex with chloroorganic ligands, has also been 
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652 EXACT RANDOM-WALK MODELS. I 

compared with the new probability functions and 
excellent agreement with the (expected) P1 theoreti- 
cal distribution has been obtained. The discrepancy 
between the recalculated distribution and the P1 
theoretical rules out the latter space group both by 
visual comparison and quantitative discrepancy 
criteria. It is concluded that probability density func- 
tions are definitely preferable to moments in attempt- 
ing to resolve a space-group ambiguity. Measures of 
discrepancy to be used in such statistical tests are 
proposed and discussed in some detail. 

Introduction 

Generalizations of probability density functions 
(p.d.f.'s) of the normalized structure factor and 
related statistics have so far been based on expansions 
of asymptotic distributions in terms of appropriate 
orthogonal polynomials (see, for example, Shmueli 
& Wilson, 1981, 1983). The coefficients of such 
expansions depend on factors such as symmetry, 
chemical composition and presence of dispersive 
scatterers, not allowed for by the asymptotic p.d.f.'s 
(Wilson, 1949; Shmueli, 1979). These generalized dis- 
tributions are given by truncated expansions and are, 
therefore, approximate; improving their accuracy 
means adding more expansion terms of rapidly 
increasing complexity. The existing expansions can 
cope with problems that are due to the presence of 
outstandingly heavy atoms in all crystallographic 
space groups (Wilson, 1978; Shmueli & Kaldor, 1981, 
1983; Shmueli, 1982a). However, for very 
heterogeneous asymmetric units in the space groups 
Pl  and P1, the discrepancies between the actual and 
the existing approximate generalized distributions are 
significantly large and may, possibly, hinder a suc- 
cessful resolution of a space-group ambiguity. Thus, 
either an extension of these generalized p.d.f.'s, or 
an alternative (exact) approach, is needed. 

Exact p.d.f.'s of the structure factor, based on the 
solution of the random-walk problem (query: Pear- 
son, 1905; solution: Kluyver, 1906) and applicable 
to P1 and P l, were first introduced into the crystallo- 
graphic literature by Hauptman & Karle (1952). 
However, Kluyver's solution can hardly be used as 
it stands, owing to its complexity, and generalization 
of its expansions to higher symmetries proved to be 
difficult, so the random-walk approach was aban- 
doned in favour of truncated expansions (Karle & 
Hauptman, 1953; Hauptman & Karle, 1953a) of the 
types mentioned above. 

The feasibility of a re-introduction of this concep- 
tually attractive, but seemingly difficult approach, 
into crystallographic statistics was indicated to us by 
several recent achievements in random-walk methods 
[for a review see, for example, Weiss (1983)]. A prob- 
lem, almost analogous to ours, related to statistics of 
combined sinusoidal waves (Rayleigh, 1880), has 

been investigated by Barakat (1974), in connection 
with his work on intensity distributions in laser 
speckle. Barakat observed that the amplitudes of the 
waves considered are bounded, and thus the p.d.f, of 
their combination (sum) can be represented by Four- 
ier and Fourier-Bessel series, which are readily sum- 
mable. This should be the case with the structure 
factor as well, since the maximum amplitudes of the 
'waves' it combines are just the atomic scattering 
factors at a given temperature. Barakat's results have 
been discussed and further developed by Weiss & 
Kiefer (1983), who represented them in general forms 
that are applicable to one- and two-dimensional ran- 
dom-walk problems. Their expressions are valid for 
random walks with unequal step sizes. The latter 
authors (Weiss & Kiefer, 1983; Kiefer & Weiss, 1983) 
have also investigated steepest-descents approxima- 
tions to random-walk p.d.f.'s (Daniels, 1954) and 
have shown them to compare favourably with other 
relevant approximate methods. Slightly earlier, Wil- 
son (1983) showed that results due to Cramrr (1938) 
could be applied to the equal-atom case; the 
expression obtained is equivalent to that from steepest 
descents. 

The present paper introduces exact expressions for 
the probability density function of the magnitude of 
the normalized structure factor I EI, calculable to any 
accuracy for an arbitrary atomic composition of the 
asymmetric unit, for the space groups P1 and P1. 
These new expressions are tested by comparing them 
with (i) simulated distributions corresponding to 
hypothetical structures of various degrees of atomic 
heterogeneity and (ii) a distribution of I EI which has 
been recalculated from published atomic parameters 
of a triclinic complex of platinum with a chloroor- 
ganic moiety (Faggiani, Lippert & Lock, 1980). The 
statistical significance of the differences between 
experimental and theoretical distributions is 
examined in some detail, and quantitative dis- 
crepancy critieria, of importance in the resolution of 
space-group ambiguities, are proposed. 

Probability density functions of IEI in PI and PI 

The original problem of the two-dimensional random 
walk (Pearson, 1905; Kluyver, 1906) assumes a 
sequence of n contiguous steps, of known lengths but 
random relative orientations, and requires the proba- 
bility density function of the distance between the 
start and end points of this walk, usually called the 
end-to-end distance. 

This general problem in statistics finds its counter- 
parts in many branches of science. In crystallography, 
it was first identified by Hauptman & Karle (1952) 
with the problem of finding the probability density 
function of the magnitude of the structure factor, 
[FI. These authors introduced the vector polygon 
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representation of the structure-factor equation 
N 

F(h )=  ~ fj exp (2-n'ih. rj), (1) 
j = l  

where each of the atomic contributions to F(h) is 
represented as a vector in the complex plane, F(h) 
is the resultant, and its magnitude, ]F(h)[, is compar- 
able to the distance between the ends of the open 
polygon formed by these vectors (Hauptman & Karle, 
1952). 

Two assumptions must hold for the above identifi- 
cation to be valid: (i) the atomic contributions to 
F(h) are independent, and (ii) the atomic phase 
angles, 27rh.rj, are uniformly distributed in the 
[0, 2rr] range. The second assumption is satisfied, in 
practice, if all the atoms are located in general posi- 
tions and a large set of reflection data (i.e. reciprocal- 
lattice vectors h) is considered. It should, however, 
be pointed out that the necessary uniformity of atomic 
phase angles may be described as arising from (i) a 
fixed structure and uniformly distributed reciprocal- 
lattice vectors, or (ii) a fixed h and atoms uniformly 
distributed throughout the unit cell. The p.d.f, of the 
structure factor is the same for the above two situ- 
ations only if the set of data is infinite (Hauptman & 
Karle, 1953 b; Giacovazzo, 1977). Wilson (1981 ) has 
discussed the possibility of allowing for non- 
independence of atomic positions in expansions of 
the Hermite-Laguerre type. 

Space group P-1 

The appropriate random-walk p.d.f, is that of the 
end-to-end distance projected onto an arbitrary direc- 
tion, and the real axis may conveniently be chosen 
for this purpose. The projected end-to-end distance 
of a classical two-dimensional random walk is given 
by I R'I, where 

n 
R ' =  E tj cos 0j, (2) 

j = l  

n is the number of steps, Lj is the length of the j th 
step, 0j is the angle it forms with the real axis, and 
the probability that R' lies between R' and R' +dR '  
can be represented by the Fourier series 

P(R') d R ' =  1 1 +2 C,. cos ('trmR'/LT dR', 
m = l  

(3) 

where 

Cm -- = fi Jo('amLj/ LT), (4) 
j = l  

J0 is a Bessel function of zero order and LT = Y.j"=~ Lj 
is the maximum extension of the walk (Barakat, 1974; 
Weiss & Kiefer, 1984). 

The corresponding expression for the p.d.f, of a 
centrosymmetric structure factor, in the space group 
P1, can now be readily obtained by identifying the 
number of steps with one half the number of atoms 
per unit cell, the step length with twice the atomic 
scattering factor, and the maximum extension of the 
walk with the sum of the scattering factors. The sum 
of the projected pairs of steps is the structure factor 

N/2 
F ( h ) = 2  Z fjcos(Z'rrh.rj) (5) 

j = l  

itself. Introducing the above replacements into (3) 
and (4), we obtain 

P ( F ) = ~  1+2 ~m cos(~rmF/S,) , (6) 
m = l  

where 

and 

N/2 
C~ )= H Jo(2rrm£/S,) (7t 

j---I 

N 

s, = Z £ (8) 
j = l  

for the p.d.f, of (5). Since P(F) = P( -F) ,  as expected, 
we obtain the p.d.f, of the magnitude of F by doubling 
the right hand side of (6). 

The transition to [El, the magnitude of the normal- 
ized structure factor, is readily achieved by noting that ),2 

P(IFI)  = P(IEI)  Z f2 (9) 
- - - j =  I 

(see, for example, Shmueli & Wilson, 1981). The 
resulting p.d.f, of I EI can then be written as 

P ( I e l )  = ~ 1 +2 ~ C~ i) cos (TrmalEI) , 
m = l  

0<[El<lEImax, (10) 
where the coefficients C~ ) are defined as in (7), and 

( N I f 2 )  I / 2 / ( ~  ) Ol -~" n~ = . \ j= ,£  ~ Z'/2/ SI . ( 1 1 )  

For the equal-atom case, (10) simplifies to 

p ( ] E ] ) = ~ l / 2 { 1  + 2 ~ [Z{2rrm~ ] N/2 
L °k-Y-]  J 

× cos (~rm~l E l ) / .  
J 

(12) 

Equation (11) will serve for the evaluation of the 
distribution when the number of atoms is small 
enough to become a disturbing factor. However, for 
N = 30, P(I E I) already deviates from the Wilson-type 

1/2 2 Gaussian p.d.f., (2/7r) exp ( - E  /2), by less than 
2%, throughout the [0, 3] range of [El. The conver- 
gence of the Fourier series in (10) has been examined 
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and it appears that 40 terms are sufficient for a 
hypothetical asymmetric unit containing 14 carbon 
atoms and one uranium. In general, the number of 
terms required increases with increasing 
heterogeneity and decreasing numbers of atoms in 
the asymmetric unit. However, (10) is so readily 
evaluated that the number of terms should not present 
any difficulties. 

Space group P1 
The model density is now the p.d.f, of the end-to- 

end distance itself, as can be seen from the foregoing 
considerations. This can be treated as a joint density 
of the real and imaginary parts of the structure factor, 
where the phase is subsequently integrated out, but 
the resulting double Fourier series is less convenient 
to handle than the 'radial' distribution derived by 
Barakat (1974) and discussed by Kiefer & Weiss 
(1983). Denoting the end-to-end distance by 

IR,=I ~ Ljexp(iOj)[, (13) 
j = l  

where the symbols have the same meaning as in (2), 
the probability density function of lRI is given by 

2 l e l ~  DmJo(TmlRI/Lr), 0 < I R I < L T ,  P( IRI)=  L---~r =, 

(14) 

where ym are successive zeros of the Bessel function 
Jo(x)(see, for example, Abramowitz & Stegun, 1972), 
the expansion coefficients in (14) have the form 

1 
I-I Jo(%,LJLT), (15) Um-j2(rm)  j= 1 

where Jl(x) is a Bessel function of order one and LT 
is the maximum extension of the walk, defined as in 
(3). 

The translation of (14) to the p.d.f, of lEI for the 
space group P1 proceeds in an analogous manner to 
that described above. We obtain 

o o  

P(IEI)--Ea21EI Y~ O~Jo(%,alE[), 
m = l  

0<lEI < IEl.~ax, (16) 

where 
N 

D(~) 1 H ~, ,  -j2(-Tm ) ~= Jo(T,cfj/S,) (17) 

and the quantities Si and a have the same meaning 
as in (11). 

Equations (10) and (16) depend explicitly on the 
atomic composition of the asymmetric unit and thus 
constitute formal solutions to the problem of effects 
of atomic heterogeneity on intensity statistics in the 
above two space groups. The fact that these p.d.f.'s 

are given as infinite series does not diminish their 
practical value, since both series converge rapidly. 
We have examined the numerical effects of the pre- 
cision that was used by computing the Bessel func- 
tions and their zeroes (cf. Appendix A), and found 
the usual polynomial approximations to Bessel func- 
tions of orders zero and one (see, for example, 
Abramowitz & Stegun, 1972) adequate for most prac- 
tical purposes. 

Expressions for exact cumulants and moments of 
the projection p.d.f., corresponding to (3), have been 
derived by Kiefer & Weiss (1983) and we have com- 
p a r e d  them with those of the five-term distribution 
for P1, derived by Shmueli (1982a). The comparison 
was subject to the same replacements and identifica- 
tions used in translating the random-walk p.d.f, to 
that of the normalized structure factor. A complete 
agreement was obtained for the first five even 
moments of lEI, which have been expanded in detail 
starting from the closed expressions furnished by both 
methods. The agreement is, of course, not surprising 
since the 2nth moment of either of the p.d.f.'s given 
as expansions in terms of orthogonal polynomials 
requires only the first n terms of the expansion 
(Shmueli & Wilson, 1981). 

Simulated distributions 

The performance of the above probability density 
functions has been tested by comparing them with 
simulated distributions of I EI, for some problematic 
atomic compositions. Such simulations have been 
described in some detail by Shmueli (1982b), and are 
recalled below. 

The uniform distribution of the atomic phase angles 
(see above) is simulated by replacing the scalar prod- 
ucts h.  rj, in (1), with computer-generated random 
numbers, uniform in the [0, 1] range. Of course, this 
is justified only if the atoms (and especially the heavy 
scatterers) do not occupy special positions, and the 
set of data to be considered is large. Atomic scattering 
factors are replaced with quantities proportional to 
atomic numbers, since the normalized structure factor 
depends on the ratios fj/(~N=lf2)l/2 and the latter 
do not depend strongly on the Bragg angle. Thus, for 
example, the normalized structure factor for a unit 
cell containing 29 carbons and one uranium can be 
written, for the present purpose, as 

30 
E= ~ ajexp(iOj)/(lF'[2) ~/2, (18) 

j = l  

where aj equals 1 or 15½, according as j corresponds 
to carbon or uranium, respectively, and 0j is uniform 
in the [0, 2zr] range; the denominator in (18) can be 
computed as the root mean square of the magnitude 
of the numerator, over the simulated sample, or 
approximated by Ek a~, [in analogy with Wilson's 
(1942) ~].  
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The present experiments are based on samples of 
3000 I El's each, and the histograms are constructed 
in the [0, 3] range of I EI, the counts being recorded 
for thirty channels of equal widths in the above range. 
The normalization is performed with simulated rather 
than estimated sigma's, in order to provide another 
check on the simulation. 

Fig. l (a)  and (b) show the results of such simula- 
tions, and their comparison with theoretical probabil- 
ity density funitions: the 'exact' ones, i.e. those com- 
puted from (10) and (16), and the appropriate centric 
and acentric asymptotic p.d.f.'s based on the central 
limit theorem approach (Wilson, 1949). The 
hypothetical atomic compositions chosen are CIaU 
and C29U asymmetric units of the space groups P i  
and P1 corresponding to Fig. l(a)  and (b), respec- 

P(IEI) 

200 

I00 

(a) 

'<"" r 

,ooi// .[ :,. 
2 3 

(b) 

Fig. 1. Simulated and theoretical distributions of IEI. The theoreti- 
cal p.d.f.'s given in each figure are scaled to the histogram. The 
solid lines denote the random-walk p.d.f.'s and the (well resol- 
ved) dashed lines correspond to the central-limit asymptotic 
p.d.f.'s. The height of each rectangle equals the number of IEI 
values which lie within the corresponding histogram channel. 
(a) A CI4U asymmetric unit in Pi ,  (b) a C29U asymmetric unit 
in P l; a dashed curve, which is nearly indistinguishable from 
the solid one in b, corresponds to Sim's (1958) p.d.f, for a single 
heavy atom in P I. 

tively. Fig. l(b) also contains a p.d.f, of IEI, based 
on the p.d.f, of IFI given by Sim (1958) for a single 
heavy atom, and a number of light ones, in the unit 
cell of space group P1. The p.d.f.'s are scaled to the 
histograms as explained by Shmueli (1982b). 

The agreement of the Fourier (10) and the Fourier- 
Bessel (16) expansions for the p.d.f.'s of lEI with the 
simulated histograms of this quantity, is very good 
throughout the range of [El considered. The inability 
of the asymptotic p.d.f.'s to account for these distribu- 
tions is tree to the breakdown of the central limit 
theorem for such highly heterogeneous sums of ran- 
dom variables. Neither can the existing expansions 
of the p.d.f.'s in terms of orthogonal polynomials 
cope with such heterogeneities throughout the useful 
range of IEI, for P i  and P1 (Shmueli, 1982a, b). On 
the other hand, the remarkable agreement of Sim's 
(1958) p.d.f, with the histogram in Fig. l(b) [dis- 
crepancy indices: X2=7.93, k =  14, R=0.035 (see 
below)] is because the Wilson (1949) distribution is 
applied, in his derivation, to the light-atom part of 
the structure (Sim, 1958) only. Similar equations are 
given for two equal heavy atoms in triclinic space 
groups (Srinivasan & Parthasarathy, 1976), as 
integrals that have to be numerically evaluated. 

Many similar simulations, for other assumed com- 
positions, lead to comparable visual and quantitative 
(see below) agreement with (10) and (16). 

A real example 

Several distributions of lEI, which were recalculated 
from published and well refined structural para- 
meters, have been previously compared with general- 
ized expansions for the cumulative distribution func- 
tions of IEI (Shmueli, 1982a). One of the structures 
that were tested in the latter study, a complex of 
platinum with a ch_loroorganic moiety crystallizing in 
the space group P1 ( C 6 C 1 2 N 4 0 4 P t ,  Faggiani, Lippert 
& Lock, 1980), has been chosen for the present com- 
parison. 

The magnitudes of the normalized structure factors 
E have been obtained with the aid of program NOR-  
M A L  of the M U L T A N 8 0  system (Main, Fiske, Hull, 
Lessinger, Germain, Declercq & Woolfson, 1980) for 
2871 recalculated independent structure factors in the 
copper sphere. This version of N O R M A L  has also 
been modified to produce a histogram of [El and 
the remaining output required by subsequent stat- 
istical routines (cf. Shmueli, 1982a, where such 
modifications were outlined for N O R M A L  of the 
M U L T A N 7 8  system). 

The composition-dependent terms in (10) and (16), 
i.e. the unitary scattering factors fJ(Y.~=l fk) [cf. (7)] 
and a [cf. ( l l)] ,  have been obtained as weighted 
averages over the overlapping shells used by 
N O R M A L  in the construction of the Wilson plot 
(cf. Shmueli, 1982a). Thus, for example, the mean 
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value of a from (11) is computed as 

N B N a 

if= Z n,(.,Y,'/2/S,),/Z n,, (19) 
i = 1  i = 1  

where n i is the number of reflections in the ith shell 
and NB is the number of shells or number of points 
in the Wilson plot. 

The distribution (histogram) of the recalculated [EI 
values and the theoretical probability density func- 
tions (10) and (16), scaled to the histogram, are shown 
in Fig. 2. Both theoretical p.d.f.'s refer to the observed 
unit-cell contents of the structure considered. 

It is seen from Fig. 2 that the centrosymmetric p.d.f. 
(10) agrees remarkably well with the histogram of IE[ 
throughout the range, while the agreement with the 
non-centrosymmetric Fourier-Bessel series (16) is 
much worse, even from a visual 4nspection of the 
graphs alone. The space group PT is thus correctly 
indicated. 

Fig. 2 illustrates a successful application of exact 
random-walk distributions to the heavy-atom prob- 
lem in intensity statistics, but it also displays the 
problem of space-group ambiguity to its full extent. 
It is seen that the non-centrosymmetric p.d.f, deviates 
from the centrosymmetric one mainly in the regions 
of small I EI values and those around the peaks of the 
distributions. The inclusion of 'zeros' and 'unob- 
served' reflections in such tests is therefore impera- 
tive. The non-centrosymmetric p.d.f, in Fig. 2 is 
appreciably broader than that in Fig. l b, because 
there are two platinum atoms in a 34-atom cell of PT 
(excluding H atoms). Also, the modes of the theoreti- 
cal P I and P I distributions are fairly close to each 

P(IEI) 

200 

I 0 (  

I 
/ \ 

/ 

Fig. 2. A histogram of [E I for a solved triclinic platinum complex 
and its comparison with centrosymmetric and non-centrosym- 
metric triclinic random-walk p.d.f.'s. The solid curve corresponds 
to the centrosymmetric Fourier Series (10) and the dashed one 
to the non-centrosymmetric Fourier-Bessel series (16). Both 
theoretical p.d.f.'s have been scaled to the histogram. The height 
of each rectangle equals the number of lEI values that lie in the 
corresponding histogram channel. For explanations see text. 

other and the overlap of the distributions is consider- 
able. A possible consequence of this situation is the 
limited value of the moments of IEI as sole dis- 
criminators between the two possible space groups, 
in such extreme cases. Thus, the values of (IEI4), in 
the present example, are 1.69 (from the recalculated 
distribution of IEI for the published structure), 1.72 
(for P ] )  and 1.57 (for P1 ), the latter two values being 
obtained by the method of Shmueli & Wilson ( 1981 ). 
This is clearly a narrow margin, even though the 
indication is correct. The cumulative distribution 
function provides a much better discrimination 
between the space groups in question, but it is not 
readily interpretable in terms of the fine details of the 
distribution, which may be needed in non-trivial situ- 
ations. The most meaningful statistical test still 
remains the direct comparison of the experimental 
distribution with the possible probability density 
functions. 

The need for discrepancy critieria that may also 
provide statistical measures of confidence, with which 
a space group is indeed preferably indicated, is 
apparent and such criteria are treated in the next 
section. 

Significance of differences between distributions 

Consider a histogram, which has been constructed 
by sorting N observations among k (not necessarily 
equal) channels, and let p(x) be a given theoretical 
p.d.f, to be compared with the histogram. In order to 
compare the observed and theoretical densities, we 
require the actual and expected numbers of observa- 
tions falling in each channel of the histogram, as well 
as appropriate measures of discrepancy between these 
two sets of numbers. 

Let ni and m~ be the actual and the expected num- 
bers of observations falling in the ith channel of the 
histogram. The discrepancy between these sets of 
numbers can be conveniently estimated by using a 
residual such as the familiar R, defined by 

=I 
where w~ is a weight, or by evaluating 

X2=y. (ni-m,)2/rn,, (21) 
i 

which is a widely employed measure in statistical 
practice. 

In order to evaluate the mi, we observe that the 
probability of an observation falling in the ith channel 
is given by 

x I 

a,= ~ p(x) dx, (22) 
x~_ i 
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where [x~_~, xi] is the range of the variable x (in our 
case I EI) spanned by the ith channel. If the width of 
the channel is small, (22) can often be approximated 
by 

a, = p[(x,_~ + x,)/2]Ax,, (23) 

where Ax~ = x~--x~_~ is the width of the ith channel. 
The expected number of observations falling in this 
channel is thus 

mi = N o t i ,  (24) 

where N--Y.k= I n~ is the total number of the observa- 
tions, and the mi can be simply evaluated by comput- 
ing the theoretical p.d.f, at the midpoints of the chan- 
nels. The discrepancy measures R and ,,3( 2 a r e  very 
often informative as they stand, especially when a 
given experimental distribution is compared with two 
or more possible theoretical ones (cf  Table 1). 
However, they also have statistical interpretations. 
Especially well known are the tables of percentage 
points of the X 2 distribution [e.g. Sachs, 1982] which 
permit one to obtain the probability that a value of 
X 2, for a given number of degrees of freedom [in our 
case, the effective number of channels (see below)], 
corresponds to a good fit between the theoretical and 
experimental dis tr ibut ions-at  a given confidence 
level. An alternative, albeit more qualitative, pro- 
cedure is an examination of the expected values of 
R and X 2, given in this paper. 

As shown in Appendix B, the expected value and 
the variance of X 2 are given by 

( / ] (2)  = k -  1 (25) 

and 

o'2(X2) = 2(k - 1 ), (26) 

respectively, where k is the actual number of terms 
in the summation for X 2 [cf (21)]; this may equal, or 
be smaller than, the number of channels in the his- 
togram (see below). Hence, if an observed value of 
,~2 much exceeds 

(X2}+2o ' (X2)=(k-1)+212(k-1)]  I/2 (27) 

it is likely* that the distribution of n (the histogram) 
is significantly different from that of the given p.d.f. 
with which the histogram is compared. For k = 25, 
which is typical for the number of effective channels 
in the examples cited in this paper, this limit is 
about 38. 

Similarly, it is shown in Appendix B that the expec- 
ted value and variance of R 2 are given by 

'[(z ) ] (R2) = ~  ct 2 -- 1 (28) 

* If  the distribution were normal a range of  two s tandard devi- 
ations (more precisely 1-96 s tandard deviations) on either side of  
the mean value would correspond to 95% confidence limits. 

and 

o ' 2 ( R  2) = 2 Y. o'~/(Y. 2 2  mi) , (29)  
i i 

respectively, where 

2 Noq(1 - a,) (30) o r  i 

is the variance of the (binomial) distribution of n~ (cf. 
Appendix B), or very crudely 

o'E( g 2) __ 2(R 2}/N (31) 

on using (30) and (B9). Equations (28), (29) and (31) 
are based on assumed unit weights in (20). 

Considering the probabilistic aspect of the dis- 
crepancies, the theoretical p.d.f, of the structure factor 
applies to all the configurations that correspond to a 
given space-group symmetry and atomic composition, 
and is thus of the 'fixed h and random r' type, while 
the true p.d.f, of the observations is related to a certain 
(albeit unknown) fixed structure and a finite set of 
diffraction data. Such two p.d.f.'s are, in principle, 
different (e.g. Gia¢ovazzo, 1977) and this should be 
reflected in the discrepancy between the theoretical 
and experimental distributions. This is another aspect 
of the finite sampling, to which the discrepancies are 
due in part. 

Results and some practical considerations 

The measures of discrepancy discussed above have 
been applied to the results presented in Figs. 1 and 
2 as well as to other distributions, which are not 
displayed. Table 1 summarizes the values of R, X 2 as 
well as the effective number of channels used in the 
computation of the latter. 

It appears that the X 2 criterion is a rather sensitive 
one, and its value for a correct distribution is usually 
smaller than the effective number of channels used. 
Similarly, the value of R for a correct distribution 
also tends to be lower than the corresponding expec- 
ted value that follows from (B9). These expected 
values o f x  2 and R thus appear to be useful indicators 
of discrepancies that are associated with a good fit. 

Table 1 shows that the presence oftwo heavy atoms 
in the asymmetric unit greatly decreases the effect of 
atomic heterogeneity on the distributions, as com- 
pared with one heavy-atom only. This is in agreement 
with predictions and observations reported elsewhere 
Shmueli, 1982b), and also explains the numerous 
successful applications of Wilson (1949) statistics to 
situations where it would not be expected to work. 

Thinly populated channels pose no particular prob- 
lem with R 2, they simply add small increments to 
both numerator and denominator, without greatly 
affecting the ratio. With X 2, however, small values of 
mi give rise to considerable uncertainties, since the 
effect of a particular difference n i - m i  is greatly 
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Table 1. Discrepancy measures for comparison of simu- 
lated and recalculated distributions with asymptotic and 

exact p.d.f' s 

For  s imulat ions,  the assumed composi t ion  of  the asymmetr ic  unit is C,,Xp 
and the indica tor  o f  heterogenei ty  is denoted  by O = Z × / Z c ,  where Z is the 

1 atomic number ,  e.g. p = 153 means  that the heavy a tom is uranium. The 
number  o f  a toms in the asymmetr ic  unit is taken as 15 and 30 for the space 
groups PT and P I ,  respectively. Discrepancy measures:  the subscripts on 
R and g z are 10, 16, T or  i ,  according as the distr ibution is compared  with 
(10), (16), the Wilson (1949) centric p.d.f, or  the Wilson (1949) acentric 
p.d.f., respectively.  The effective number  of  channels  which part icipate in 
the calula t ion of  g 2 is deno ted  by kto, kt6, k i or kl, where the subscripts 
have the same meaning as for R and g 2 above. 

Simulated PT distr ibutions 

m p p X~o klo X~ k~ Rio RT 

14 1 5 18-5 26 89.2 29 0.058 0.141 
14 l 10 16.7 22 549.2 29 0-068 0.365 
14 I 15½ 20.2 20 1028.7 29 0-080 0.465 
13 2 5 24-3 27 61.9 29 0.082 0.104 
13 2 10 19.5 24 165'6 29 0-071 0.156 
13 2 15~ 22.1 23 258.3 29 0-077 0.197 

Simulated P l  distr ibutions 

m p p X~6 kt6 X~ kl Rto Ri 
29 I 5 18.8 23 96.3 25 0.071 0-151 
29 1 10 13.1 18 871.8 25 0.054 0.415 
29 1 15~ 8.8 14 2167.8 25 0.029 0.596 
28 2 5 I1.1 23 62.5 25 0.050 0.109 
28 2 10 17.0 20 347.3 25 0.061 0.275 
28 2 15~ 16-3 18 691.6 25 0.063 0-387 

Distr ibut ion recalculated for the solved chloropla t inate  (Fig. 2) 

g~o = 9.58 klo = 20 Rto = 0.047 (test for PT) 
~,16=405.0 kt6 = 19 Rio=0-183 (test for PI) 

inflated when mi is small. This effect is well recognized 
and most statistical texts recommend aggregating 
adjacent thinly populated channels until an accep- 
table aggregate value of mi is attained. Cramrr (1945) 
suggests a minimum mi of ten; earlier books suggest 
a higher value, later books (e.g. Sachs, 1982) only 
four. The value of the m~ threshold used in Table 1 
is five. It should be noted that the correct pro- 
cedure is to aggregate channels until the set mini- 
mum is achieved, and not to omit channels with 
small m~. 

A comment on the effect of experimental errors is 
in order. When an experimental p.d.f, is being com- 
pared with a theoretical one, the difference between 
ni and m~ will depend not only on the sampling 
fluctuations discussed above, and on the difference 
between the true p.d.f, of the observations and the 
theoretical one, but also on the experimental errors 
in the observed p.d.f. The experimental errors may 
be of two kinds: (i) systematic errors, which shift the 
center of gravity of the p.d.f., and (ii) random, which 
blur its details but do not alter its mean. An example 
of type (i) is uncorrected extinction, which shifts the 
higher intensities systematically to lower values; an 
example of type (ii) is statistical fluctuations in count- 
ing rates, which lead to shifts that may result in higher 
or lower values of the intensities. 

A quantitative discussion of these effects will be 
presented elsewhere. 

Concluding remarks 

The present paper contains the first proposal of exact 
probability density functions of the magnitude of the 
normalized structure factor that depend explicitly on 
the atomic composition of the asymmetric unit and 
can be readily computed to any desired accuracy. The 
present simulated (Fig. 1, Table 1) and recalculated 
(Fig. 2) distributions, for moderately as well as highly 
heterogeneous asymmetric units, agree remarkably 
well with the appropriate theoretical p.d.f.'s. 

One of the important, but not often realized, points 
made in the present study is the visual superiority of 
probability density functions over cumulative distri- 
butions and moments in practical intensity statistics. 
When an observed distribution is compared with the 
possible centric and acentric p.d.f.'s, the asymmetric 
unit taken for the construction of the acentric p.d.f. 
is of necessity twice as large as that for the centric 
one, and the heterogeneity of the acentric model is 
considerably decreased. This situation leads, in the 
presence of outstandingly heavy atoms, to little 
apparent difference between the theoretical cumula- 
tive distributions for intermediate and high I EI values. 
On the other hand, the difference between the corre- 
sponding p.d.f.'s is much more obvious [compare Fig. 
l b of Shmueli (1982a) with Fig. 2 in this paper, which 
both refer to the same solved structure]. This is par- 
ticularly important when there is an appreciable pro- 
portion of unobserved reflections and proper advan- 
tage cannot be taken of the marked dilterence between 
the theoretical p.d.f.'s at the low side of the distri- 
bution. 

Although a graphical representation of the results 
of a statistical test is often the most convincing one, 
the measures of discrepancy dealt with above are very 
informative and may also be indispensable if the 
margin of discrimination between distributions is par- 
ticularly narrow. Both X 2 and R are conveniently 
computed, and the former has the advantage of being 
useful in estimating the probability of an identifica- 
tion being formally correct (e.g. Sachs, 1982). 

We conclude with a comment on the 'exact' p.d.f.'s 
presented in this paper, compared with the 
expansions in terms of Hermite and Laguerre poly- 
nomials (Shmueli & Wilson, 1981, 1982; Shmueli, 
1982a, b). At present, the orthogonal-polynomial 
expansions can be evaluated for any space group, 
given the necessary moments, while the accurate and 
simpler random-walk p.d.f.'s can be used only for PT 
and P1. Since the departures of experimental p.d.f.'s 
from the popular asymptotic ones (Wilson, 1949) are 
usually largest for low symmetries, it appears logical 
to try and replace the Hermite-Laguerre p.d.f.'s 
by exact statistics for these symmetries. The ex- 
tension of the present study to the monoclinic 
system is in progress and will be reported at a 
later date. 
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APPENDIX A 
Calculation of the zeros of Bessel functions 

Since the number of roots of the equation Jo(y)= 0, 
required for evaluating (16) or similar Fourier-Bessel 
expansions, may be quite large, it seems desirable to 
summarize a convenient algorithm for their computa- 
tion. In outline, the method consists of using an initial 
approximation to the zero given by Abramowitz & 
Stegun (1972), and refining the initial estimate by the 
Newton-Raphson method (e.g. Hamming, 1973). The 
lowest-order approximation for the nth root of 
Jo(y) = 0 is 

1 124 120 928 
y, =/3-~ - - +  8/3 3(8/3) 3 15(8/3) 5 

401 743 168 
- 105(8/3) 7 + . . . ,  (A1) 

where/3 = ( n -  1/4)I7". For n > 5 the values given by 
(A1) have a relative error less than 10 -]I so that no 
refinement is needed for the higher zeroes. Tables of 
zeros of Bessel functions (Table 9.5, Abramowitz & 
Stegun, 1972, and references quoted therein) can be 
used for checking out the above procedure. 
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2 

: ( B s )  
i mi 

APPENDIX B 
Expected values and variances of X 2 and R 2 

Given a set of observations n~, 112, . . . ,  11k and a 
corresponding set of their expected values, it is most 
unlikely that the ith observation (or channel) n~ equal 
exactly its expected value m i. The p.d.f, of any par- 
ticular distribution 111,..., 11k is given by the multi- 
nomial expression 

N!a~" . . .  c~7, k 
p ( n l , . . . ,  11k)-- (B1) 

111! . . . r ig!  

(Cramrr, 1945, pp. 318-319; Johnson & Kotz, 1969, 
pp. 281-291). Any particular 11i has a binomial distri- 
bution with parameters N and oq [cf. (23) and (24)], 
so that its variance is 

2 Noq(1-o~i) .  (B2) or i = 

However, the n~ are not independent variables, since 
N = ~ = l  11~, where k is the number of channels. The 
covariance of any pair is 

cov (Hi, nj) = - N a i a j ,  (B3) 

which is negligible only if the peak region of the p.d.f. 
spans a large number of channels. 

The required statistics of x 2 and R 2 are now readily 
evaluated. We have, using (B2), (24) and the condi- 
tion: ~=1 a, = 1 

(X2~ = ~ (( n i -  mi) 2) (B4) 

i mi 

= E ( 1 - - f f i )  
i 

= k - 1  

(B6)  

(B7) 

and the variance of the X 2 distribution is given (for 
large N) by (26) in the text. These statistics of X 2 
thus depend on the number of channels alone. 

The calculations of (R  2) and o'2(R 2) a re  more com- 
plicated when the correct definition of R 2 [ (20)]  is 
used. However, noting that the use of ni in the 
denominator of (20) is not significantly different from 
the use of mi, and making the appropriate replace- 
ment, the derivations are greatly simplified. We thus 
have 

( R  2) 2 = mi (B8) 
i i 

= N E  a , ( 1 - a , ) / •  m,, (B9) 
i i 

which readily leads to (28) in the text. The variance 
of R 2 is obtained in a similar manner, by first evaluat- 
ing (R4),  from 

o-2( R2)  = ( Ra) - ( R2) 2. 

The correspondence between R 2 and X 2 turns out to 
be rather close. In much crystallographic work 
weights proportional to 1/tr 2 are used, or in this case 
1 / Imp(1-ai ) ]  [cf  (24) and (30)]. If the number of 
channels k is reasonably large this differs little from 
1/m~, the factor required to convert the numerator of 
(20) into g 2. The weighted value of R 2 is thus 

R 2 =  N - I x 2 .  (B10) 

It should, however, be remembered that R E depends 
on the actual value of k that was used for the construc- 
tion of the histogram, while k for X 2 is the effective 
number of channels, i.e. those channels for which the 
value of mi exceeds some threshold, which was taken 
as 5 in this paper. 
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Abstract 

The 7? refinement of Rogers [Acta Cryst. (1981), A37, 
734-741] has been applied to a wide range of non- 
centrosymmetric structures containing medium to 
strong anomalous scatterers; it has been shown to be 
an effective and robust method. The use of the general 
term 'absolute structure' (to signify a structure suc- 
cessfully distinguished from its inverse by, for 
example, analysis of anomalous scattering effects) is 
recommended. 

Introduction 

The absolute configuration/polar-axis direction 
(sometimes referred to as chirality/polarity) of a non- 
centrosymmetric crystal structure is often determined 
by least-squares refinement of both alternative models 
followed by a statistical comparison of R values using 
Hamilton's (1965) test. An attempt to provide a more 
reliable method was made by Rogers (1981), who 
suggested refining a parameter r/as a factor multiply- 

0108-7673/84/060660-03501.50 

ing all imaginary components f'{ of the anomalous 
dispersion terms of the atomic scattering factors; 77 
should then adopt values of +1 or -1 ,  corresponding 
to the correct or incorrect model, respectively. The 
least-squares estimate of the standard deviation of r/ 
may then be used as a measure of confidence, being 
assessed against the value 2 (the range of possible r/ 
values). Some criticisms of the method have been 
made by Flack (1983), who suggested the use of an 
alternative parameter x, derived from considerations 
of enantiomorphic twinnins, to avoid certain tech- 
nical problems of r/ refinement in cases where the 
structure is almost centrosymmetric. The purpose of 
this article is to present the results of some 7? refine- 
ments based on the experience of the author and 
colleagues in this institute. 

All structures (see Table 1), except where otherwise 
stated, were measured with Mo Ka radiation on a 
Stoe-Siemens four-circle diffractometer in profile- 
fitting mode (Clegg, 1981). The 77 refinement is 
part of the standard SHELXTL program system 
(Sheldrick, 1978). 
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